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Abstract
Predictive uncertainty in a regression model
arises due to three sources: aleatoric uncer-
tainty, parameter uncertainty, and model inade-
quacy—sometimes called structural uncertainty.
Most work has considered how to estimate pa-
rameter uncertainty, typically with Bayesian ap-
proaches. Estimating structural uncertainty, how-
ever, is much more difficult because it effectively
corresponds to estimating the bias of the model.
In this work, we investigate the utility of het-
eroscedastic regression for estimating the part of
predictive uncertainty not captured by parame-
ter uncertainty. We highlight two key properties:
(1) the estimated variance per input provides an
estimate of the aleatoric uncertainty and the struc-
tural uncertainty and (2) the optimization proce-
dure naturally concentrates model capacity on
a subset of the space, both reducing structural
uncertainty in that subset and facilitating identi-
fication of what parts of the space can be well
modelled. We design several synthetic experi-
ments to elucidate these two properties, and show
when heteroscedastic regression effectively mod-
els uncertainty due to model inadequacy.

1. Introduction
Over the past decade, neural networks have become the
gold standard across a wide variety of applications in both
regression and classification tasks (for instance, (Bengio
et al., 2003; Hinton et al., 2012; Sermanet et al., 2014;
Krizhevsky et al., 2017)). Under least squares regression,
deep learning models output a point estimate of the mean
of the conditional probability distribution for a given input,
that is, ŷ = E[y|x]. This output, however, does not tell us
anything about the uncertainty of the prediction.

Capturing predictive uncertainty is important in many ap-
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plications, particularly in high risk prediction tasks such
as medical diagnostics (Yang et al., 2016) and autonomous
vehicles (Kendall and Cipolla, 2016). Several recent papers
have also demonstrated that uncertainty measures can be
important in model-based reinforcement learning (model-
based RL) (Kalweit and Boedecker, 2017; Kurutach et al.,
2018; Abbas et al., 2020).

Predictive uncertainty in a learned regression model can
stem from multiple sources. This paper discusses three pri-
mary sources of uncertainty: aleatoric uncertainty (stochas-
ticity inherent in the data), parameter uncertainty (uncer-
tainty about which parameters actually generated the data),
and model inadequacy (the function class from which we
have drawn our algorithm lacks the capacity to represent the
true function of the data generating process).

Parameter uncertainty refers to uncertainty about the values
of the parameters of our model, given a function class from
which the model is drawn and all available data. Parameter
uncertainty can be reduced through the collection of more
data and eliminated in the presence of infinite data. There
is a large body of work devoted to capturing parameter un-
certainty in neural networks using Bayesian methods by ap-
proximating the posterior over parameters (MacKay, 1992;
Neal, 1995; Hinton and van Camp, 1993; Barber and Bishop,
1998; Graves, 2011; Blundell et al., 2015; Gal and Ghahra-
mani, 2016; Gal et al., 2017; Li and Gal, 2017). In large
neural networks it is computationally intractable to com-
pute the full posterior over parameters which has resulted
in a significant body of research on techniques to approxi-
mate the posterior. Bayesian approximation methods have
proved effective at capturing parameter uncertainty in neu-
ral networks, but they are not designed to capture aleatoric
uncertainty or uncertainty due to model inadequacy.

An alternative approach to capturing parameter uncertainty
is bootstrapping and model ensembling (Osband et al., 2016;
Lakshminarayanan et al., 2017; Osband et al., 2018; Jain
et al., 2020). Ensembling techniques work by training an
ensemble of neural networks on independent samples of the
data and using the empirical distribution over the parameters
of the neural networks in the ensemble to estimate param-
eter uncertainty. For instance, the higher the variance in
parameters of the networks, the higher the uncertainty. Sim-
ilarly to Bayesian methods, these techniques have proved
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reasonably effective at capturing parameter uncertainty, but
do not reveal information regarding aleatoric uncertainty or
model inadequacy.

Despite its importance, there has been less work devoted
to capturing aleatoric uncertainty and uncertainty due to
model inadequacy. Chryssolouris et al. (1996), Townsend
and Tarassenko (1999), and Rivals and Personnaz (2000)
used perturbation models to estimate parameter and aleatoric
uncertainty. Perturbation models, however, require high di-
mensional weight covariance matrices making them difficult
to use for neural networks with large numbers of weights
(Zhang and Luh, 2005). Ding and He (2003) explored a
different avenue to capturing uncertainty by applying Car-
roll and Ruppert (1988) regression transformation model.
Their method is computationally expensive, however, and
has not received much traction in neural network research.
More recently Zhu and Laptev (2017) developed a technique
to capture uncertainty due to model inadequacy using an
encoder-decoder framework with Long Short Term Memory
(LSTM) networks. This technique is restricted to time-series
data.

The technique for capturing uncertainty that we analyze in
this paper is heteroscedastic regression (Nix and Weigend,
1994; Nix and Weigend, 1995), a regression technique that
attempts to learn estimates of both the mean and variance
of the conditional probability distribution. Typically neural
network regression objectives, e.g. least squares regression,
assume homoscedasticity. That is, that the variability of
the targets is assumed to be constant across all the data. In
least squares regression we assume that the targets, Yi, are a
function of the inputs, Xi, and some unknown parameters θ,
along with a noise or error term εi, i.e. Yi = f(Xi, θ) + εi.
Most regression models assume that the error term εi is
independent of the inputs and is drawn independent and
identically distributed (i.i.d.) from some distribution (in the
case of least squares regression, a Gaussian distribution).
While this assumption is mathematically convenient, it is
not true in many applications. Heteroscedastic regression,
on the other hand, instead assumes the noise to be input-
dependent and the model tries to predict not only the mean
of the conditional distribution, but also the variance.

Heteroscedastic regression is easy to implement and train
and can take advantage of pre-existing deep learning frame-
works and optimization techniques making it an attractive
choice as a technique to capture uncertainty. Despite this,
heteroscedastic regression has not been widely adopted in
the machine learning community. We believe that this is at
least partially due to a dearth of research rigorously exam-
ining the efficacy of the technique in the machine learning
community.

Williams (1996) extended the original formulation of het-
eroscedastic regression to the multivariate case while Penny

and Roberts (1997) used a technique inspired by het-
eroscedastic regression along with a committee of neural
networks to attempt to capture uncertainty from all three
sources. More recently Blum and François (2010) used the
technique to approximate Bayesian inference. There has
been some work investigating applications of heteroscedas-
tic regression to various domains, such as Kendall and Gal
(2017) to capture aleatoric uncertainty in computer vision,
Ng et al. (2017) in predicting surgery times, and Abbas et al.
(2020) to capture uncertainty due to model inadequacy in
model based RL.

To our knowledge, however, there has not been a rigorous in-
vestigation into the soundness of heteroscedastic regression
as a technique for capturing uncertainty due to model inade-
quacy and aleatoric uncertainty. This paper aims to fill that
gap while also providing a comparison of heteroscedastic
regression to least squares regression.

We provide an analysis of the optimal values of the esti-
mates for the mean and variance of the conditional proba-
bility distribution based on the objective for heteroscedastic
regression. We show that the Bayes Estimators for the mean
and variance of P (Y |X) are the conditional mean and the
error due to model inadequacy and irreducible error, respec-
tively. We then empirically investigate the effectiveness of
heteroscedastic regression as a method for capturing uncer-
tainty and providing robust estimates of the mean under a
variety of assumptions.

2. Background
As mentioned above, in regression analysis we assume that
the dependent variables are a function of the independent
variables along with an additive noise term. The task is to
learn this function fθ : R → R based on a given data set
D = {(xi, yi)Ni=1}, where x, y ∈ R and f is parameterized
by θ. Note that this can easily be extended to the multi-
dimensional case where xi ∈ Rn, yi ∈ Rm, but for ease of
exposition we consider the one-dimensional case here. In
order to treat this task as an optimization problem, we pick
an objective function to minimize.

In least squares regression, the objective which we seek
to minimize is the sum of squares of the residuals, that
is L(θ) =

∑N
i=1(yi − ŷi)

2. The least squares objective
corresponds to the maximum likelihood estimate under
the assumption of input-independent, Gaussian error terms
(Charnes et al., 1976).

The assumption of input-independent Gaussian error terms
can equivalently be expressed as an assumption that the
conditional distribution of the data generating process is
Gaussian with a fixed variance for all inputs, p(y|x) =
N (fµ(x), σ2). From this perspective we can view the pre-
diction ŷ = fµ̂(x) as an estimator of the mean of the con-
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ditional distribution, P (Y |X), and we can use the mean-
squared-error (MSE) of our estimator, E

[(
yi − fµ̂(xi)

)2]
,

as a measure of the generalzation error for our model.

MSE can be decomposed into three distinct sources of error
(equation 1): bias, variance, and irreducible error (Ge-
man et al., 1992). These three sources of error generally
correspond to the three sources of predictive uncertainty
mentioned earlier. Error due to bias results from model
inadequacy, error due to variance is a result of parameter un-
certainty, and irreducible error is due to aleatoric uncertainty.
Both bias and variance can be reduced, although there is
often a trade-off between these types of error in practice
(Kohavi et al., 1996; Derumigny and Schmidt-Hieber, 2020),
whereas irreducible error, as its name suggests, cannot be
reduced as it is due to stochasticity inherent in the data
generating process.

EY |X,D
[(
y − fµ̂(x)

)2]
= EY |X

[(
y − EY |X [y|x]

)2]
+ED

[(
ED[fµ̂(x)]− fµ̂(x)

)2]
+
(
EY |X [y|x]− ED[fµ̂(x)]

)2
(1)

The subscripts in the expectations indicate the source of ran-
domness over which the expectation is being taken, where
D refers to the data, as the estimator will vary depending
on the data sampled. The first term in the decomposition
is known as irreducible error, while the second and third
terms represent variance and bias2, respectively. Note that
as more data is collected, the variance can be reduced, and
in the limit, eliminated entirely.

The assumption of homoscedastic variance is often not true
in practice and a relaxation of this assumption could enable
a network to capture information about the variance in the
data generating process. In heteroscedastic regression, we
instead assume the variance of the Gaussian data generat-
ing process is dependent on the input, just like the mean.
This gives us the new conditional probability distribution
p(y|x) = N (fµ(x), fσ2(x)) where now both fµ̂ and fσ̂2

are estimators of the mean and variance, respectively.

Maximizing the log-likelihood of equation (2) under these
new assumptions leads to a different objective than that in
least squares regression. This new objective is given in equa-
tion (3) below. Looking at this new objective we can see
that the predicted variance, fσ̂2(x) acts as a kind of regular-
izer on the objective. In the additive term, we can see that
the model is penalized logarithmically for predicting high
variance. More interestingly, however, the squared residuals
for the mean prediction are scaled by the inverse of the pre-
dicted variance. This means that when the regression model
is unable to learn good estimates of the mean in certain re-

gions of the inputs, the loss will be minimized by predicting
higher variance. Intuitively this suggests that in regions of
the data with high bias or irreducible error, the model should
output a large fσ̂2(x), possibly capturing uncertainty due to
model inadequacy and aleatoric uncertainty.

p(y|x) = N (fµ(x), fσ2(x)) (2)

Li(θ) =
(yi − fµ̂(xi))

2

2fσ̂2(xi)
+

1

2
log fσ̂2(xi) (3)

3. Optimal Solution for Heteroscedastic
Regression

For least squares regression it is a well-established fact that
the optimal predictor, in terms of minimizing the expected
cost (also known as the Bayes estimator), is the mean of the
conditional distribution, that is f∗µ̂(x) = E [y|x].

We want to consider the optimal values for fσ̂2 and fµ̂ for
every possible value of x. We denote the optimal values
by f∗σ̂2 and f∗µ̂ , respectively. For the sake of notational
simplicity, we denote fσ̂2(x) = σ̂2 and fµ̂(x) = µ̂ in the
following derivation. We perform our analysis with respect
to the data generating distribution rather than with respect
to a distribution over data samples.

f∗σ̂2(x) = arg min
σ̂2

E [C(σ̂2, µ̂, y)]

f∗µ̂(x) = arg min
µ̂

E [C(σ̂2, µ̂, y)]

To solve for f∗σ̂2 and f∗µ̂ we use the expected cost as our
objective.

L(σ̂2, µ̂, y) =

∫
X

p(x)

∫
Y

C(σ̂2, µ̂, y)p(y|x) dy dx

=

∫
X

p(x)

∫
Y

(
(µ̂− y)2

2σ̂2
+

1

2
log σ̂2

)
p(y|x) dy dx

To minimize this objective we only need to consider the
inner integral. Taking the gradient, setting it equal to zero,
and solving for f∗σ̂2 and f∗µ̂ we get the following.

∂L(σ̂2, µ̂)

∂σ̂2
=

∫
Y

(
(µ̂− y)2

−2σ̂2
+

1

2σ̂2

)
p(y|x) dy = 0

⇒ σ̂2 =

∫
Y

(µ̂− y)2p(y|x) dy

σ̂2 = E [(µ̂− y)2|x]

and
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∂L(σ̂2, µ̂)

∂µ̂
=

∫
Y

(
(µ̂− y)

σ̂2

)
p(y|x) dy = 0

⇒ µ̂ =

∫
Y

yp(y|x) dy

µ̂ = E [y|x]

Despite having a different objective, the optimal value for
heteroscedastic regression, f∗µ̂(x) = E [y|x], is the same as
in least squares regression. The optimal value for fσ̂2 on
the other hand is the squared residuals of the fµ̂ network,
f∗σ̂2(x) = E [(fµ̂(x)− y)2|x].

The optimal solution for fσ̂2 can be decomposed in a man-
ner similar to the decomposition of MSE given in the back-
ground. We can see from this decomposition that in the
infinite data regime, or for fixed a dataset, f∗σ̂2 captures
bias and irreducible error (equation (4)), demonstrating that
heteroscedastic regression is a principled technique for cap-
turing uncertainty due to model inadequacy and aleatoric
uncertainty.

It is also worth noting that these optimal values do not de-
pend on the data generating distribution being Gaussian, sug-
gesting that heteroscedastic regression can still be a sound
technique for capturing uncertainty even when the data is
not normally distributed.

E[(fµ̂(x)− y)2|x] =

bias2︷ ︸︸ ︷
(fµ̂(x)− E[y|x])2

+ E[(E[y|x]− y)2|x]︸ ︷︷ ︸
irreducible error

(4)

In the case of non-linear neural networks, it is not possible
to derive a closed form solution for these optimal estimators,
but if we restrict fµ̂ to be linear in x, i.e. fµ̂(xi) = wµxi
wherewµ ∈ R, we can express f∗µ̂ via a closed form solution.
In this case, the optimal solution for fµ̂ is that of weighted
least squares regression and the closed form solution is
shown below in equation (5), where Σ ∈ RN×N , with

1
fσ̂2 (xi)

on the diagonal.

wµ = (XTΣX)−1XTΣY, where X,Y ∈ RN×1 (5)

4. Experiments
In this section, we perform several experiments to empiri-
cally validate the soundness of heteroscedastic regression
as a technique for capturing uncertainty due to model inade-
quacy and aleatoric uncertainty. We use synthetic datasets in
order to precisely investigate how heteroscedastic regression
performs under different noise and function approximation
regimes.

We also provide a comparison of the quality of the estimates
of the conditional mean between heteroscedastic regression
and least squares regression. We again use synthetic datasets
to enable a precise analysis and develop a metric for assess-
ing the quality of a regression model in order to facilitate
our comparison of the two techniques.

4.1. Experimental Setup

We use two separate neural networks (i.e. they do not share
weights) to learn fµ̂ and fσ̂2 . The exact architecture in terms
of number of hidden layers, units, and activation functions
differs depending on the experiment, so we specify these
details before explaining the individual experiments. To
ensure the predicted variance, fσ̂2(x), is positive, we use
soft-plus, ln(ex + 1), as the last layer’s activation function.
For numerical stability, we added 10−6 to the predicted
variance.

All experiments were run 30 times with each run consisting
of 800 epochs. We use 2000 data points for each experiment.
To choose the best learning rate for each of the experiments
we performed a parameter sweep over 6 different step sizes
(2−5, 2−7, 2−9, 2−11, 2−13, 2−15) and chose value that re-
sulted in the best performance using the area under the curve
(AUC) over the last 100 epochs. The networks were trained
with mini-batch SGD with Adam as an optimizer with β1
and β2 equal to 0.9 and 0.999, respectively. The batch size
was 128 for all experiments.

4.2. Empirical Verification of Optimal fσ̂2

In the first set of experiments, we investigate learning fσ̂2

while holding the fµ̂ network fixed. The purpose of this
experiment is to provide empirical validation for the opti-
mal value of fσ̂2 . The analysis of section 3 suggests that
a fσ̂2 network of sufficient capacity should converge to
f∗σ̂2(x) = E [(fµ̂(x)− y)2|x] and should be able to learn
this error whether it is due bias as a result of an fµ̂ of insuf-
ficient capacity or irreducible error. The fσ̂2 network had
two hidden layers with 64 hidden units each and a ReLU
activation function.

We designed four different experiments, each with their
corresponding synthetic dataset, to analyze scenarios when
uncertainty is due to model inadequacy, aleatoric uncer-
tainty, or both. For each of the below, x was sampled from
the interval (0, 4). U (0, 3) is the uniform distribution.

1. y = 2x+ εx, where εx ∼ N (0, 0.5x)

2. y = 2x+

{
x+ 1, for x ∈ [2, 3]

0, else

3. y = 2x+ εx, where εx ∼ N
(
1, sin(2x)

)
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Figure 1. Plots (a), (c), (e), and (g) show the learned fσ̂2 , the
fixed fµ̂, and the data points. Plots (b), (d), (f), and (h) give the
corresponding learning curves for each experiment. The shaded
area in these plots represents the standard error.

4. y = 2x+

{
εx ∼ U (0, 3), for x ∈ [2, 3]

0, else

For each of the experiments we fixed fµ̂(x) = 2x. This
decision was made to control the sources of error in each
experiment. In experiment 1 the only source of uncertainty
is aleatoric uncertainty, resulting in irreducible error. Experi-
ment 2, on the other hand, is designed so that the only source
of uncertainty due to model inadequacy as for x ∈ (2, 3) the
fµ̂ has not correctly modelled the data, resulting in a biased
model. The data generating processes in experiments 3 and
4 exhibit both types of uncertainty, resulting in error due to
bias and irreducible error.

The results of the experiments are shown in figure 1. The
learned fσ̂2 for each experiment are shown in the left hand
plot while the corresponding learning curves are shown in
the right hand plot for each of the 4 experiments. The shaded
area in plots (a), (c), (e), and (g) represent the learned fσ̂2

at the end of training. The experiments demonstrate that, as
the analysis in section 3 predicted, the fσ̂2 network learns
the error from the fµ̂ predictions whether this error is due to
bias, irreducible error, or both, thus providing an accurate
estimate of aleatoric uncertainty and structural uncertainty
due to model inadequacy.

The loss shown in the learning curves is calculated as
1
n

∑n
i=1[fσ̂2(x)− (fµ̂(x)− y)2]2 where n is the number of

data points. That is, it is the MSE of the variance network’s
predictions of the squared errors of the mean network. With
a decaying learning rate and enough training examples, this
loss would converge to zero.

4.3. Threshold Metric

In order to compare the performance of heteroscedastic re-
gression with least squares regression, we need a meaningful
metric to measure performance. It is not necessarily obvious
what this metric should be. One option is to use the MSE be-
tween the true mean, fµ, and the learned fµ̂, but MSE gives

equal weight to every data point, which does not necessarily
provide a good measure of performance. For instance, if the
noise in the data is input-dependent, we would expect to see
higher MSE in regions of higher variance; however, because
there is simply more noise in the data in these regions, high
MSE does not necessarily correspond to poor performance
of the learned fµ̂. In fact, an algorithm that achieves lower
MSE could well do a poorer job of approximating the true
underlying function of the data generating process if it over-
fits to regions of high variance, compared to an algorithm
that correctly recognizes the variance in these regions and
succeeds in modelling the true underlying function.

To address this, we introduce two metrics: hard-threshold
(equation 6) and soft-threshold (equation 7), to measure
algorithm performance. The intuition behind these metrics
is that in some cases we might prefer to have an optimal
or near optimal estimate for a subset of the data and a poor
estimate on other regions of the sampling domain, rather
than having a sub-optimal answer for all the data.

For the hard threshold, we calculate the Euclidean distance
(d(x, y) = ‖fµ̂(x)− y‖22) between the predictions and the
true value for each data point. If the distance is lower than
some fixed threshold, our metric is equal to one for that data
point (meaning the prediction is useful), and zero otherwise
(equation 6). For the soft threshold metric, we again use the
Euclidean distance as an input to our soft-threshold function
(equation 7) which outputs a real number in the range of
(0, 1], where 0 represents a poor prediction and 1 represents
a perfect prediction.

Both of these threshold functions have a hyper-parameter
η that changes the strictness of the functions. For the hard-
threshold function, the lower the η the stricter the function
(i.e. the prediction must be closer to the true value to be
considered successful) whereas a lower η corresponds to a
relaxation of the threshold for the soft-threshold function.
We take the average of the values of the threshold func-
tions over all the data points and use it as a measure of
performance for the fµ̂ model. The σ below is the sigmoid
function.

Hard-Threshold(d(x, y), η) =

{
1, if d(x, y) ≤ η
0, otherwise

(6)

Soft-Threshold(d(x, y), η) = 2
(

1− σ
(
ηd(x, y)

))
(7)

4.4. Comparison of Heteroscedastic and Least Squares
Regression

The second set of experiments investigates the performance
of heteroscedastic regression compared to least squares re-
gression under several regimes chosen to explore the effect
of model capacity and sources of uncertainty. We examine
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two scenarios, one in which fσ̂2 has sufficient capacity to
approximate the true error of the fµ̂ network and a second
in which the network has insufficient capacity to learn the
true error. For all of the following experiments the fµ̂ net-
work and fσ̂2 network are trained simultaneously on the
heteroscedastic regression objective.

We compare the performance of the heteroscedastic and
least squares regression models using MSE and our two
threshold metrics. It is important to note that because least
squares regression is being trained on an MSE objective,
it should always achieve lower MSE than heteroscedastic
regression, but as explained above, this is not necessarily a
good measure of performance.

4.4.1. SUFFICIENT NETWORK CAPACITY FOR fσ̂2

In this scenario, the capacity of the fσ̂2 network is sufficient
to approximate the true error from the learned fµ̂ network.
The fµ̂ network for both heteroscedastic and least squares
regression, however, is restricted to the class of linear func-
tions. Similar to the above experiments, we again design
synthetic datasets with sources of error coming exclusively
due to model inadequacy, exclusively due to irreducible er-
ror, or both. The fσ̂2 for these experiments network had
two hidden layers with 64 hidden units each and a ReLU
activation function.

Model inadequacy as the sole source of error: For this
case, we designed two experiments each with a correspond-
ing dataset defined as follows.

1. y = 1
2x

2, x ∈ (−4, 4)

2. y = 2x+

{
x+ 1, for x ∈ [2, 3]

0, for x ∈ (0, 2) ∪ (3, 4)

The results of these two experiments are given in figures 2
and 3. The learned models using heteroscedastic and least
squares regression are shown in plots (a) and (d) as the blue
and red lines, respectively. As in the experiments with a
fixed fµ̂, the fσ̂2 network successfully learns an accurate
approximation of the error due to model bias.

Due to the weighting from fσ̂2(x) in the objective for het-
eroscedastic regression, the fµ̂ network learns a different
function than the network in least squares regression de-
spite having an identical architecture. The least squares
model tries to minimize the error of the learned mean for
the whole input space equally, while the fµ̂ network from
heteroscedastic regression focuses its resources on areas of
the data where it is able to learn a good function approxima-
tion. As a result, the MSE (plots (b) and (e)) is lower for
least squares regression.

When we compare the two regression techniques using our
hard and soft threshold metrics we see a different story.
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Figure 2. Plots (a), (d) show the learned models and data. The
learned fσ̂2 is the shaded region. Plots (b) and (e) show the learn-
ing curve for heteroscedastic and least squares models. Plots (c)
and (f) show the learning curve for fσ̂2 . The shaded area is the
standard error.

Heteroscedastic regression consistently outperforms least
squares regression on over 120 different threshold values
for both the hard and soft thresholds. This is because by
concentrating resources on areas of the input space where
the fµ̂ network is able to achieve lower error, the model is
able to avoid overfitting to uncertainty caused by model mis-
specification. Hence, not only is heteroscedastic regression
capturing meaningful information about the certainty of the
predictions, but it is, at least by certain metrics, actually
learning better predictions about the mean than least squares
regression.
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Figure 3. Plots (a) and (c) show performance according to the
hard threshold metric, while plots (b) and (d) are for the soft
threshold metric. The shaded area is the standard error. The first
and second rows show the results of the first and second experiment,
respectively.

Aleatoric uncertainty as the sole source of error: To ex-
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amine the case of aleatoric uncertainty as the sole source of
error we designed one experiment using the same synthetic
data generation process as in an earlier experiment.

y = 2x+N (0, 0.5x), x ∈ (0, 4)

The fµ̂ network is again linear and has an identical architec-
ture for both heteroscedastic and least squares regression.
The underlying function of the data generating process is
linear and the heteroscedastic noise is distributed symmet-
rically about this function, so we would expect both het-
eroscedastic and least squares regression to successfully
learn to approximate this function.

The plots of the learned functions and evaluation metrics
can be found in the appendix in the interest of space because
the models did in fact perform exactly as expected. Both
heteroscedastic and least squares regression do indeed learn
the underlying function y = 2x and achieve the same MSE.
The fσ̂2 network also successfully learns the irreducible
error. The two techniques are also nearly identical according
to our threshold metrics, but heteroscedastic regression is
more stable over the 30 runs. In this scenario, we observe
that the two regression techniques perform equally well,
but that heteroscedastic regression has learned an accurate
estimate of the uncertainty of the model, thus providing us
with more information regarding the distribution of the data
and a measure of confidence in the predictions from the fµ̂
network.

Model Inadequacy and Aleatoric Uncertainty as
Sources of Error: To investigate this scenario we again
re-used a data generating process from an earlier experi-
ment.

y = 2x+

{
εx ∼ U (0, 3), for x ∈ [2, 3]

0, for x ∈ (0, 2) ∪ (3, 4)

For x ∈ [2, 3] the regression models are not able to ade-
quately fit the data as it would require a piecewise function
to learn E[y|x] in this region and, additionally, there is a
large amount of irreducible error in this interval. The results
of this experiment are given in figure 4. Least squares and
heteroscedastic regression learn slightly different functions
as least squares regression tries to minimize the MSE over
the whole input space whereas heteroscedastic regression
focuses its resources on the intervals (0, 2) and (3, 4) where
it is able to learn the true underlying function exactly.

The fσ̂2 network successfully learns to model the squared
errors of the fµ̂ network. It is worth noting that even though
the fµ̂ network consistently predicts a value too small in
the interval [2, 3], the fσ̂2 network is learning the squared
errors, so its predictions are distributed symmetrically about
the learned mean.

Comparing heteroscedastic and least squares regression in
this regime according to our three metrics, we once again
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Figure 4. First row: Plot (a) shows the learned models and data.
The learned fσ̂2 is the shaded region. Plots (b) shows the learning
curve for heteroscedastic and least squares models. Plots (c) shows
the learning curve for fσ̂2 . The shaded area is the standard error.
Second row: Plot (a) shows performance according to the hard
threshold metric, while plot (b) is for the soft threshold metric.
The shaded area is the standard error.

see that least squares achieve a slightly lower MSE, but het-
eroscedastic regression outperforms least squares according
to the two threshold metrics.

4.4.2. INSUFFICIENT NETWORK CAPACITY FOR fσ̂2

Up to this point, all of the experiments have considered
scenarios where fσ̂2 is drawn from a function class with
sufficient capacity to learn the error from the fµ̂ network.
This is obviously not necessarily always true. To investigate
the impact of having an fσ̂2 of insufficient capacity, we de-
signed an experiment in which the fµ̂ network has sufficient
capacity to learn the conditional mean of the data, but fσ̂2

is unable to properly model the error.

This has the potential to have adverse effects on the perfor-
mance of heteroscedastic regression because the objective
function is weighted by 1

fσ̂2
. Poor predictions of fσ̂2 could

result in a misallocation of resources from the fµ̂ network.
In order to avoid a feedback loop where a prediction of
high variance leads to a poor prediction of the mean, further
entrenching the prediction of high variance, one can add a
constant to the predictions from the fσ̂2 network and decay
this constant over time. To this end, we added a constant of
5 x 10

−epoch#
100 to the predictions of the fσ̂2 network.

In our experiment fσ̂2 is linear, but the noise in the data
is non-linear. We used five different architectures for fµ̂.
Each fµ̂ network has two hidden layers, but differing num-
bers of hidden units increasing in multiples of four from 8
to 32 hidden units. As in previous experiments, the least
squares regression architectures are identical to that of the
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fµ̂ networks. The data generating process is given below.

y = sin(5x) + 2 +

{
εx ∼ U (−2, 2), for x ∈ (2, 4)

0, else

The result of this experiment is shown in figure 5 while plots
of evaluation metrics can be found in the appendix. The
linear fσ̂2 is unable to correctly model the error, resulting
in predictions of relatively uniform variance across the full
input space for the smaller fµ̂ networks, and an exploding
variance prediction for the fµ̂ network with 32 hidden units.

The poor estimates of variance also have adverse effects on
the predictions of the mean for heteroscedastic regression.
For least squares regression, the network is able to learn
a good approximation of the conditional mean of the data
(the sin curve) for all network sizes, whereas the fµ̂ network
for the heteroscedastic regression model does not learn a
really good approximation until the network has at least
24 hidden units. According to our threshold metrics, least
squares outperforms heteroscedastic regression in each case,
except for networks with 32 hidden units, in which case the
performance is almost identical.

hidden units = [12,12] 

hidden units = [24,24] hidden units = [32,32] 

hidden units = [16,16] 

x

y

y y

y

x

x x
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Figure 5. Plots show the learned models and data. The learned fσ̂2

is the shaded region.

These results suggest that in scenarios where the fσ̂2 net-
work does not have sufficient capacity to model the error it
can result in poor predictions from fσ̂2 , as well adversely
effecting the predictions of fµ̂ network.

4.4.3. HOMOSCEDASTIC NOISE

As a final piece of analysis, we investigated the performance
of heteroscedastic and least squares regression in the pres-
ence of homoscedastic noise. Details of this experiment can
be found in the appendix, but, interestingly, heteroscedas-
tic regression was able to perform as least as well as least
squares according to our threshold metrics while also pro-
viding accurate estimates of the uncertainty. This is despite

least squares regression explicitly assuming homoscedastic-
ity of the data.

5. Conclusion
This paper has attempted to provide a rigorous analysis of
heteroscedastic regression as a technique for capturing un-
certainty. Previous research has found success in applying
heteroscedastic regression to machine learning problems,
but we do not believe that there has been a robust investi-
gation of the type of uncertainty captured by the technique,
nor the scenarios in which it may or may not be effective. To
this end, we designed experiments to evaluate heteroscedas-
tic regression in a variety of regimes in which we were able
to precisely control the sources of uncertainty in the model.

Our experiments demonstrate that heteroscedastic regres-
sion is effective at capturing uncertainty due to model in-
adequacy as well as aleatoric uncertainty. When the fσ̂2

network has sufficient capacity to model this uncertainty it
converges to an estimate of the model bias plus irreducible
error. In addition to providing a sound technique to capture
uncertainty, heteroscedastic regression has the potential to
improve estimates of the conditional mean under certain con-
ditions, as it prevents the regression model from overfitting
to noise by weighting the loss function.

When the fσ̂2 network does not have sufficient capacity to
model the uncertainty, the technique is much less effective
and is likely to perform worse than least squares regression.
Initializing the network with a large constant that is added
to its predictions and decaying this constant over time helps
to alleviate the problems caused by poor predictions fσ̂2(x),
but heteroscedastic regression still consistently performed
worse than least squares regression, especially for smaller
fµ̂ networks. Finally, we investigated the performance of
heteroscedastic regression in the presence of homoscedastic
noise and found that it is able to perform as well as least
squares regression while also providing robust estimates of
the predictive uncertainty of the model.

We hope that this analysis encourages researchers and prac-
titioners to further explore the use of heteroscedastic regres-
sion as a technique for capturing predictive uncertainty and
learning robust regression models under a variety of noise
regimes. We feel that it is a neglected and underutilized
technique that complements other more well-studied tech-
niques for capturing parameter uncertainty, while also being
easy to implement within existing frameworks.
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