
Applying Variance Reduction Methods to Policy
Evaluation for Off-Policy Setting

Farnaz Kohankhaki and Kiarash Aghakasiri

ML Course Project, University of Alberta, Edmonton, Canada

Abstract. One of the main problems in reinforcement learning is com-
puting the value function of each state. This problem is harder to solve
when the number of states is large and the agent is behaving off-policy.
In this case, we use gradient TD methods that are compatible with off-
policy learning and function approximation. These methods try to mini-
mize mean squared projected Bellman error or MSPBE. One challenge in
minimizing the MSPBE is its high variance. Stochastic variance reduc-
tion methods or SVRG are general methods that help variance reduction.
Our goal is to apply SVRG and SAGA, two commonly used variance re-
duction methods, to reduce the variance of GTD2 and TDC methods.
We succeed to reduce the variance (one implementation of variance) for
TDC but couldn’t achieve the same results for GTD2.

Keywords: Policy Evaluation · Off-Policy · Variance Reduction · Func-
tion Approximation.

1 Introduction

Temporal-difference or TD methods are powerful techniques in solving rein-
forcement learning or RL problems. TD learning can learn from an incomplete
sequence of events without waiting for the outcome. In TD learning the current
prediction is updated based on the next prediction. [3]

In many RL problems, the number of states is very large. Therefore, it is not
practical to compute the value of each state individually(like tabular methods).
To solve this problem we use function approximation; we do not compute value
functions exactly and instead use approximation techniques. Function approxi-
mation allows us to approximate the value of unseen states from observed data.
More specifically, the states are mapped to feature vectors that have considerably
fewer components than the number of states.

The policy being learned about by the agent is called the target policy, and
the policy used to generate behavior is called the behavior policy. In off-policy
learning, we seek to learn a value function for a target policy, given data due to
a different behavior policy. Freeing the behavior policy from the target policy
allows a greater variety of exploration strategies to be used.

TD methods with function approximation have a severe stability problem.
Particularly, this stability problem arises when we seek the following four de-
sirable algorithmic features: (1) TD learning, (2) function approximation, (3)



2 Farnaz Kohankhaki and Kiarash Aghakasiri

off-policy learning, (4) linear complexity both in terms of memory and per-time-
step computation.

Gradient-TD methods are based on stochastic gradient descent in a Bell-
man error objective function. It has been proven that they converge in general
settings, including off-policy learning with unrestricted features, and nonlinear
function approximation.

In off-policy settings, the objective function that we can consider is mean
squared projected Bellman error or MSPBE which we want to minimize in our
project. Now, we will go through the math to find how can we minimize MSPBE
in linear value function setting with parameter W. First we need to write MSPBE
(1) and try to simplify the equation.

PBE = ‖πδ‖2µ = (πδ)TD(πδ) (1)

If we write down the formulas and do some simplification, after some steps
we will reach 2.

PBE = (XTDδw)T (XTDX)−1(XTDδw) (2)

To minimize PBE using Gradient Descent methods we need to take the
gradient of PBE with respect to w. The equations are shown in 3.

∇PBE = 2∇(XTDδw)T (XTDX)−1(XTDδw) (3)

The next step is to calculate these three factors. The last factor of the gradient
can be written as in 4:

XTDδw = E[ρtδtxt] (4)

The first factor can also be derived using 4. The formula is shown in 5:

∇(XTDδw)T = ∇E[ρtδtxt]
T = E[ρt∇δTt xTt ] = E[ρt(γxt+1 − xt)xTt ] (5)

Calculating the middle factor is a little bit different. You can see the formula
in 6.

XTDX = E[xtx
T
t ]⇒ (XTDX)−1 = E[xtx

T
t ]

−1
(6)

Now we can write the whole formula for the gradient of MSPBE, substituting
all the above equations (4, 5, 6) in 3.

∇PBE = 2E[ρt(γxt+1 − xt)xTt ]E[xtx
T
t ]

−1 E[ρtδtxt] (7)

At this point, we need to calculate these expectations to calculate the gradi-
ent. But as the first and third expectations are not independent we cannot use
samples because this will give us a bias estimation. Thus, we need to calculate
it using a different approach than using a sample for them. Another approach
is to calculate each expectation separately and then multiply all of them. The
problem with this approach is that it’s too computationally complex so we don’t
want to use this approach either. A more efficient idea is to compute the first



Title Suppressed Due to Excessive Length 3

two expectations and stored them and then use sampling for the third expec-
tation which is in order of quadratic complexity. In our project, We used two
algorithms called GTD(λ) and GTD2 which are based on this idea.[4]

Now we will go through a brief explanation of these two algorithms we men-
tioned above. The equations here came from [5]. First, we will start with GTD(λ).
We have three equations for that.

et = ρt(et−1γλ+ x(St))

wt+1 = wt + α(δtet − γ(1− λ)x(St+1)(eTt ht))

ht+1 = ht + β(δtet − (hTt x(St))x(St))

(8)

In 8, w is our primary variable and h is our secondary variable. Below are
the equations for GTD2 algorithm and the same thing applies for primary and
secondary variables in 9 as well.

δt = Rt+1 + γwTt x(St+1)− wTt x(St)

wt+1 = wt + α(x(St)− γx(St))(x(St)
Tht)

ht+1 = ht + β(δt − hTt x(St))x(St)

(9)

The problem with these two methods is that they usually have a high vari-
ance, so it will take a long time for them to converge. So, the next step is to
use variance reduction methods for GTD(λ) and GTD2 algorithms. In this re-
gard, we want to use SVRG and SAGA which are well-known variance reduction
methods in general and want to apply them for policy evaluation as [2]. Now,
we will explain a brief description of these variance reduction methods. Assume
we have a parameter θ and we want to minimize a loss, let’s call it L. Using
gradient descent we need to calculate the gradient of the loss with respect to our
parameter and then update the parameter like below:

θ = θ − η∇θ L (10)

In SVRG and SAGA method we don’t update our parameter with only one
sample of the gradient. In fact, we need to have two samples and the expectation
like this:

θ = θ − η(∇1
θ L+E[∇θ L]−∇2

θ L) (11)

To find an estimate for the expectation value we used a buffer. At each
update in SVRG, we randomly select two points from that buffer and calculate
the mean value of the buffer to update the weights. SAGA is very similar to
SVRG, the only difference is that we use moving mean methods in SAGA which
is less computationally expensive.

2 Methodology

In this section, we will describe the environments, the algorithms, the hyperpa-
rameters we chose and the results.



4 Farnaz Kohankhaki and Kiarash Aghakasiri

2.1 Environment Setting

For our experiments, we chose a simple MDP, called Chain environment. The
environment consists of a predefined number of states (in our experiments used
5 states) and at each state, the agent has two actions to choose between, LEFT
or RIGHT. If the agent chooses right in the rightmost state it will result in +1
reward and if the agent chooses left in the leftmost state it will result in −1
reward and in these two cases, the episode terminates. All the other transitions
have 0 reward. The environment is shown in 1.

T s0 s1 s2 s3 s4 T
-1 0 0 0 0 1

Fig. 1: Chain Environment

2.2 Algorithms

In our experiment first we implemented the two methods we mentioned in the
previous section (GTD(λ) and GTD2), then we applied SVRG these two meth-
ods. In this section, we will explain the implementation techniques and present
the algorithms.

First we start with GTD(λ) and GTD2.

Algorithm 1 GTD(λ), GTD2 Algorithms

while Max Epochs do
while Not Terminated do

Action = behavior policy(CurrentState)
Reward, NewState = env.step(Action)
if algorithm == GTD(λ) then

Calculate e, w, h with equation 8
end
if algorithm == GTD2 then

Calculate e, w, h with equation 9
end

end

end

The next thing we mentioned in the previous chapter was applying SVRG to
these two methods. Here we will explain the algorithm for adding SVRG.



Title Suppressed Due to Excessive Length 5

Algorithm 2 GTD(λ) and GTD2 with SVRG

buffer h = empty
buffer w = empty
while Max Epochs do

while Not Terminated do
Action = behavior policy(CurrentState)
Reward, NewState = env.step(Action)
if buffers are full then

for Range of SamplingRate do

∇1
w,∇2

w,∇w = two samples from buffer w and the mean of the buffer w
∇1

h,∇2
h,∇h = two samples from buffer h and the mean of the buffer h

update w, h with equation 11
end

else
if algorithm == GTD(λ) then

Append ∇w to buffer w with 8
Append ∇h to buffer h with 8

end
if algorithm == GTD2 then

Append ∇w to buffer w with 9
Append ∇h to buffer h with 9

end

end

end

end

3 Experiments

3.1 Setting

We have run GTD(λ) with λ=0 called TDC and GTD2 methods. Then we
applied SVRG and SAGA to them. For the sake of fairness, we created our ex-
periments as follows:

• Weight Initialization: Each of these methods has a secondary and primary
variable (h and w). Here we initialize both of them as an array of all zeros.

• Experiance Replay: Because the policy we have here is random, each time
our agent interacts with the environment for a while, it will result in a different
sequence of rewards and next states. Thus, we used a similar sequence of expe-
rience, created by interacting with the environment once, for all these algorithms.

• Fine-Tuning: Each of these methods may act well in a different set of
parameters so we cannot use the same parameter set for all of them. Here, we
fine-tuned each of them separately by 5 run times using the following list of
parameters:



6 Farnaz Kohankhaki and Kiarash Aghakasiri

– α = [2−5, 2−7, 2−9, 2−11]

– β = [2−1, 2−3, 2−5, 2−7, 2−9, 2−11]

In the next section, we present the results of running all these 6 different methods
after fine-tuning and using experience replay.

3.2 Results

Hyperparameters for each of these algorithms are shown in Table 1.

α β γ Buffer Size Sampling Rate

TDC 0.0078125 0.0078125 0.9 - -

GTD2 0.03125 0.5 0.9 - -

TDC+SVRG 0.00048828125 0.00048828125 0.9 100 10

GTD2+SVRG 0.001953125 0.0078125 0.9 100 10

TDC+SAGA 0.03125 0.5 0.9 100 10

GTD2+SAGA 0.03125 0.5 0.9 100 10

Table 1: Hyperparameters

Figures 2-7 show the MSPBE result over epochs for each of the methods. It
can be derived that SVRG reduces the variance of the MSPBE error.

Fig. 2: MSPBE for TDC



Title Suppressed Due to Excessive Length 7

Fig. 3: MSPBE for GTD2

Fig. 4: MSPBE for TDC with SVRG



8 Farnaz Kohankhaki and Kiarash Aghakasiri

Fig. 5: MSPBE for GTD2 with SVRG

Fig. 6: MSPBE for TDC with SAGA



Title Suppressed Due to Excessive Length 9

Fig. 7: MSPBE for GTD2 with SAGA

3.3 Evaluation

Our goal is to reduce the variance of TDC and GTD2 using SVRG and SAGA.
Now, we will compare the variance and area under the curve (AUC) of MSPBE
for 1000 epochs using the same experience for all these six methods. In table 2
you can see the average of these values for 35 run times for each of the methods.

TDC GTD2 TDC+SVRG GTD2+SVRG TDC+SAGA GTD2+SAGA

AUC 20.57852566 21.24050861 18.87458555 22.24311276 19.03480063 21.95619784

Variance 1.05892386e-04 6.43749959e-05 7.33803157e-05 1.16460709e-04 6.79855361e-05 1.08155409e-04

Table 2: Mean value of the variance and AUC of MSPBE

As you can see from table 2, unfortunately, the variance reduction approaches
didn’t work very well for GTD2 but they are working fine for TDC, which means
TDC+SVRG and TDC+SAGA has less variance and also less AUC than the
pure TDC itself. The next step is to find out if this difference is meaningful or
just happened by chance. Thus, we need statistical significance metrics to check
this.

To do this, we used independent t-test as a statistical metric. The inde-
pendent t-test, also called the two sample t-test, independent-samples t-test or
student’s t-test, is an inferential statistical test that determines whether there is
a statistically significant difference between the means in two unrelated groups.

T-test has three assumptions. The first assumption is that the scale of mea-
surement applied to the data collected follows a continuous or ordinal scale. The
second is that the data is collected from a representative, randomly selected
portion of the total population. The third assumption is the data, when plotted,



10 Farnaz Kohankhaki and Kiarash Aghakasiri

results in a normal distribution, bell-shaped distribution curve. The first two
assumptions are valid in our experiments and in figures 8 and 9 you can see
that the third assumption is also satisfied. Hence, we can use t-test for AUC and
variance.

Fig. 8: Variance of MSPBE for the six methods

Fig. 9: AUC for the six methods



Title Suppressed Due to Excessive Length 11

For TDC and TDC+SVRG, and TDC and TDC+SAGA, we calculated t-
value for both variance and AUC based on formula 12 where Xi, Si, and Ni are
mean, standard deviation, and the number of samples for method i respectively.
Absolute value of the calculated t-values are shown in table 3. We then compared
each of the t-values with the critical value computed from t table[1]. In order
to find the critical value, we go row no degree of freedom equation 13 navigate
to t.975 column where we have alpha value of 0.05 for 2 tailed test. We chose
α 0.05 to in order to get 95% confidence level. The critical value is 1.6449 for
this data. We can see that t-value for each combination is greater than critical
value. Therefore, we can confidently say that the difference between the results
was not accidentally.

t− value =
X1 −X2√
s21
N1

+
s22
N2

(12)

degree of freedom =
(
s21
N1

+
s22
N2

)2

1

N1 − 1
(
s21
N1

)2 +
1

N2 − 1
(
s22
N2

)2
(13)

TDC+SVRG TDC+SAGA

TDC 47.8856 59.1077

Table 3: t-values of t-test for variance of MSBPE

We repeated the same procedure for the AUC of MSBPE. Table 4 shows t-
values of t-test(α = 0.05)for TDC and TDC+SVRG, and TDC and TDC+SAGA.
The critical value is 1.6450 for this data. Therefore, again we can conclude that
the difference between the results was not accidentally.

TDC+SVRG TDC+SAGA

TDC 25.0303 21.4717

Table 4: t-values of t-test for AUC of MSBPE

As we mentioned before, SVRG and SAGA didn’t improve GTD2. To make
sure about that, we calculate the t-test for GTD2 and GTD2+SVRG, and GTD2
and GTD2+SAGA pairs. The results for AUC and variance are shown in table
5 and 6 respectively. As you can see from the tables the t-value is higher than
the critical value so we can conclude that SVRG and SAGA didn’t improve pure
GTD2 at least with how we calculated the variance.

GTD2+SVRG GTD2+SAGA

GTD2 67.6532 59.4170

Table 5: t-values of t-test for variance of MSBPE

GTD2+SVRG GTD2+SAGA

GTD2 14.7449 11.3013

Table 6: t-values of t-test for AUC of MSBPE



12 Farnaz Kohankhaki and Kiarash Aghakasiri

4 Conclusion

To give a summary of our research, we applied variance reduction methods
(SVRG and SAGA) to two policy evaluation methods, TDC and GTD2. In the
result section, we showed that they didn’t work as we expected for GTD2 but
they worked well for TDC. Then we applied a statistical significance test to be
sure about the correctness of the results that we got. Thus, we can conclude that
TDC+SVRG and TDC+SAGA have less variance and less area under the error
curve (MSPBE) than TDC and in general, it is a better algorithm comparing to
pure TDC.

5 Future Works

There are at least three different approaches to calculate the variance that we
know of, so the next step is to calculate these variances and check all these
methods on them as well. After that, we can run them with harder features such
as Neural Networks which are commonly used in real problems.



Title Suppressed Due to Excessive Length 13

References

1. t table. https://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf, ac-
cessed: 2019-12-5

2. Du, S.S., Chen, J., Li, L., Xiao, L., Zhou, D.: Stochastic variance reduction meth-
ods for policy evaluation. CoRR abs/1702.07944 (2017), http://arxiv.org/abs/
1702.07944

3. Maei, H.R.: Gradient temporal-difference learning algorithms (2011)
4. Sutton, R.S., Maei, H.R., Precup, D., Bhatnagar, S., Silver, D., Szepesvári, C.,

Wiewiora, E.: Fast gradient-descent methods for temporal-difference learning with
linear function approximation. In: Proceedings of the 26th Annual International
Conference on Machine Learning. pp. 993–1000. ACM (2009)

5. White, A., et al.: Developing a predictive approach to knowledge (2015)

https://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf
http://arxiv.org/abs/1702.07944
http://arxiv.org/abs/1702.07944

	Applying Variance Reduction Methods to Policy Evaluation for Off-Policy Setting

