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Abstract. In this project, I compare the performance of True online TD(λ) for five different values of
λ and three different state representations. The comparison is from two perspectives. First, I compare
them in terms of convergence. To compare the convergence I investigate the speed of convergence and the
magnitude of error in the convergence point. The second comparison is checking the sensitivity of step size
for different values of λ. First, I show that True online TD(λ) when λ=1 not only converges to a better
point for deterministic environments but it is also faster than using lower values of λ. Secondly, using tile-
coded features the algorithm seems to have less error than using state aggregation or binary-coded features
after convergence. Finally, for higher values of λ, True online TD(λ) is more sensitive to the change in step
size except in state aggregation which has the least sensitivity between the three representations in this
project.

1 Introduction

The problem in all forward view algorithms is that the agent needs to wait until it gets the target,
an n-step return, for the update. You can see the n-step return in equation 1. For large values of n,
the state value update happens many steps after the agent has actually been into that state and it
makes it delays the learning. Despite being slow we still want to use large values of n to reduce the
bias caused by bootstrapping.

Gt:t+n = Rt+1 + γRt+2 + . . .+ γn−1Rt+n + γnV (St+n) (1)

A substitution for n-step return is λ-return which you can see its formula on equation 2. λ-return
is the weighted average of all n-step returns. When λ is equal to zero the return is the same as one
step return, and when λ is equal to 1 it is the same Monte Carlo return. We can choose the value of λ
between zero and one to have almost the same effect as n-step returns. Forward view implementation of
λ-return has the same disadvantages described above for n-step returns. The good thing with λ-return
is that it can be implemented in backward view. In this view instead of waiting to get the n-step reward
the agent carries a trace with itself, so at each state, the agent knows about the trajectory and updates
are based on this trace. True online TD(λ) is a backward view algorithm which is the exact equivalent
of the online λ-return algorithm which is the forward view version. Due to its importance, it is worth
understanding the behaviour of this algorithm.

Gλt = (1− λ)
T−t−1∑
n=1

λn−1Gt:t+n + λT−t−1Gt (2)

True online TD(λ) has another parameter, λ, to tune. In this project, I investigate the performance
of different values of λ. I also compare three different state representations for True online TD(λ).
Thus, I answer the following questions:
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– For true online TD(lambda): at what value of lambda is learning the fastest, and at what value of
lambda is the converged error smaller?

– For true online TD(lambda): for which of the chosen state representations is the converged error
smaller?

– For true online TD(lambda): at which λ value and for which state representation is more sensitive
to the change of step size?

2 Methodology

In this section, I describe the environment, algorithm, and the hypotheses.

2.1 Environment Setting

A simple and commonly used environment for the task of prediction is the Chain environment. Because
of the simplicity, I decided to use this environment in this work. The environment consists of 19 states
and 2 actions in each of these states, Left and Right. Each state has a number corresponding to it and
when the agent takes ‘Right’ action the next state’s number will be one more than the previous one
and when it takes ‘Left’ action the number will be one less than the previous state. The environment
starts in the middle state (S10) and all the transitions have a reward of 0 except two transitions: In
the leftmost state (S0) choosing Left action results in -1 reward and the rightmost state (S18) choosing
Right action results in +1 reward. In both cases, the environment terminates and the next episode
starts from the middle state (S10) again.

T s0 s9 s10 s11 s18 T
-1 0. . . . . .0 1

Fig. 1: Chain Environment

2.2 Algorithms

As I explained in the previous section True online TD(λ) is equal to the online version of the λ-return
algorithm. But this statement is only true for linear function approximation. Algorithm 1 shows the
pseudo-code of True online TD(λ).

The policy of the agent is completely random and in each state it has equal chance to choose
between going left or right. I used three different state representations in this project which explained
here:

– State-aggregation: I aggregated each group of three states as one. Since the environment has 19
states so it had 7 groups in total. Then the representation for each state is the one-hot vector
corresponding to its group so each state was represented by 7 features.

– Tile-coding: I used 3 tilings and 4 tiles in each of the tilings so in total there were 12 tiles. Thus,
each state was represented by 12 features corresponding to active tiles for that state.
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– Binary-coding: In this representation, I turned state numbers into their binary equivalent and use
each bit as a feature. As the environment has 19 states so it needed 5 bits to represent the states.
Thus, each state was represented by 5 features.

Algorithm 1: True online TD(λ) for fixed policy π
z = 0
Vold = 0
S = initialize from the environment
for e < MaxEpisodes do

Choose action A according to π
Take A and get (R, S’, isTerminal) from environment
if not isTerminal then

V = wTX(S)
V’ = wTX(S′)
δ = R + γ V - V’
z = γ λ z + (1 - α γ λ zTX(S))X(S)
w = w + α (δ + V - Vold)z−α(V - Vold)X(S)
Vold = V ′

S = S’
else

V = wTX(S)
δ = R + γ V
z = γ λ z + (1 - α γ λ zTX(S))X(S)
w = w + α (δ + V - Vold)z−α(V - Vold)X(S)
z = 0
Vold = 0

2.3 Hypotheses

Here are my hypothesis for each of the questions I introduced in the introduction.

In order to answer the question about using which value of λ the algorithm converges faster and
for which one it converges to a better answer, I map them to n-step TD. We know that 1-step TD (λ
= 0) has low variance but high bias because of bootstrapping. On the other hand, Monte Carlo (λ =
1) has a high variance but no bias as it doesn’t bootstrap. Thus I hypothesize that when λ = 0 the
algorithm converges faster, because of the low variance, but to a worse point, because of the high bias
and on the contrary when λ = 1 it converges slower but to a better point.

The second question is about how well the algorithm converges for different state representations.
For a representation to have a better convergence point, it has to cover more parts of true state value
space. Here tile-coding has 12 features, state aggregation has 7 features and binary-coding has 5 fea-
tures. Just base on the number of features, I hypothesize that the function approximation space with
tile-coding is bigger and can cover more part of the true state value space. Thus, using tile-coding the
algorithm should converge with less error.
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The last question is about the sensitivity of the algorithm for different values of λ and state rep-
resentations on the change of step size. When we have bigger λ we end up with bigger values in the
eligibility vector. Since we update our weights using eligibility vector, higher values in the vector need
a lower value for step size to be compensated. So, when we have a high step size there is a higher
chance of divergence at bigger values of λ than lower values. Thus, my hypothesis is that at higher
values of λ the algorithm is more sensitive to the change of step size.

Now I want to discuss the second part of the question which is the same thing but for different state
representations. We know with our rule of thumb for step size, equation 3, that step size is inversely
proportional to E[XXT ]. So, I want to calculate this expected value for each of the representations to
answer the question. For tile coding, I know that this expectation is equal to the number of tilings which
in my case is 3. For state aggregation, the expectation is equal to 1. For binary coding, I calculated this
expectation using the stationary distribution of the policy and it is equal to 2.11 in this case. Based
on these values, I hypothesize that tile coding is the most sensitive and state aggregation is the least
to the change of step size.

α ∝ 1

τE[XXT ]
(3)

3 Experiments

In this section I will explain how I implemented the experiments to answer the questions, then I will
discuss the results one by one. I used the chain environment which I explained in section 2, with 19
states and the discount factor of 0.9 (γ). Implementation of the environment is based on the RLGlue
framework. I used 5 different λ: [1, 0.9, 0.8, 0.4, 0]. I deliberately didn’t choose them to be uniform
because I had this prior knowledge that a small amount of difference for higher values of λ has a huge
impact in terms of sensitivity to the step size (Sutton and Burto, 2018). The weight vector initialization
is random and the random seed is equal to the run number. I ran each configuration many times and
each run uses the same seed for all different configurations. For instance, if we are in run number three,
all random initializations will use random seed 3.

In order to measure the performance, I chose mean square value error which shows the distance
to the true state values and is the one that we truly want to minimize if we are able to. Calculating
MSVE needs the true state values and the stationary distribution. You can see the definition of MSVE in
equation 4. One way of calculating them is to write the Bellman equation and stationary distribution
equation and solve them. An easier way is sampling which I used in the project. I initialized the
environment for 10000 times and let the agent follows its policy and calculated the average return it
got from each state and used it as an estimation of the true state values and also calculated the fraction
of the time it spent on each state for the stationary distribution. You can see the true values used in
my experiments in the table below.

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18
-0.90 -0.80 -0.70 -0.60 -0.50 -0.40 -0.30 -0.20 -0.10 0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Table 1: This table shows the true state values for each state used in this project. Numbers cut off
after two floating points.
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MSV E(w) = ||vw − v∗π||2µ (4)

Now I will explain how I implemented the experiments. To compare the convergence for different
λs, I used 5 different values and ran the algorithm 30 times for each λ. Then took the average of these
30 run times at each episode and drew learning curve plot for three different step sizes: 2−3, 2−5, 2−7.
You can see the plots in figure 2.

Fig. 2: The X-axis is the number of episodes and the Y-axis is MSVE. Y-axis scales vary for each
representation. Left column is for state aggregation, the middle one is tile coding, and the right column
is binary coding. First row is for step size = 2−3, second row is for 2−5 and third row is for 2−7. The
error bars are smaller than the thickness of the lines for some points, so they might not be visible. The
figure shows that for λ=1 the algorithm converged faster and had the best convergence point in this
deterministic environment except with the highest step size and in binary-coded features, both at the
same time, that it diverged.

From the above graphs, we can see in all three representations and step sizes that when λ=1 it
converged to a better point except in binary representation with biggest step size which I will explain
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the reason later. So the first part of my hypothesis is correct but at λ=1 the algorithm also converged
faster which contradicts my hypothesis. I hypothesized that for λ=1 the algorithm has a higher vari-
ance so it will converge later than the other values of λ. Here our environment is deterministic so
there shouldn’t be much variance in the data. I think determinism of the environment is the reason
my hypothesis was wrong. As λ=1 has higher values in the trace vector and variance is low so at λ=1
not only it converged to a better point but also it converged faster.

Now, to have a good measurement of their speed of convergence in my experiment, I decided to
calculate the variance for each of them. So, I calculated the variance of error over the 30 run times at
each episode and then took the average for all the 50 episodes using the three different step sizes step
size (2−7, 2−5, 2−3). Below you can see the table of the variances. As I expected for two lower step
sizes higher λs cause lower variance. But for the bigger step size (2−3) in binary coding, this sequence
somehow got interrupted. I think for this step size and higher λ values it couldn’t converge (it keeps
going back and forth in error). The divergence for bigger step size gets us to sensitivity to the change
of step size that I will investigate later on.

step size = 2−7 λ = 1 λ = 0.9 λ = 0.8 λ = 0.4 λ = 0
State aggregation 0.0020 0.0028 0.0036 0.0067 0.0090

Tile coding 0.0345 0.0411 0.0472 0.0671 0.0861
Binary coding 0.0143 0.0166 0.0186 0.0235 0.0257

step size = 2−5 λ = 1 λ = 0.9 λ = 0.8 λ = 0.4 λ = 0
State aggregation 0.0013 0.0015 0.0016 0.0023 0.0030

Tile coding 0.0262 0.0274 0.0293 0.0381 0.0456
Binary coding 0.0122 0.0123 0.0127 0.0145 0.0154

step size = 2−3 λ = 1 λ = 0.9 λ = 0.8 λ = 0.4 λ = 0
State aggregation 0.0016 0.0014 0.0013 0.0014 0.0015

Tile coding 0.0238 0.0240 0.0241 0.0256 0.0278
Binary coding 0.0187 0.0122 0.0117 0.0121 0.0126

Table 2: This table shows the average of variances of different configurations over 30 runs and 50
episodes. We can see that the algorithm with bigger values of λ, had lower variance in this deterministic
environment which means they learned faster.

To compare different representations, this time I used three different λs (0, 0.8, 1.0) and drew the
plots for the same λ but different representations at each plot. You can see the results in figure 3.
Different representations have different starting points in figure 3. The reason for this difference is
although the weight initialization is the same in all representations, similar weights result in different
state values. Having different state values means different errors. As you can see in figure 3 that in
all these cases tile coding has the lowest error as I expected and binary coding has the highest error.
Only in λ = 0 and step size = 2−7, binary coding showed a lower error than state aggregation which
is because the step size is too small for state aggregation representation to converge in 50 episodes.
When I checked it with 100 episodes state aggregation reached a better point (I didn’t include this
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graph for the sake of compactness).

Fig. 3: The X-axis is number of episode and the Y-axis is MSVE. Step size is 2−3,2−5, and 2−7 in left,
middle, and right column respectively. λ is equal to 0, 1, and 0.8 in the first, middle, and the third row
respectively. The error bars are smaller than the thickness of the lines for most of the points, so they
might not be visible. As the figure shows, using tile-coding the algorithm converged to a better point
than state aggregation and binary coding.

The third hypothesis was about the sensitivity of the algorithm at different λs and state repre-
sentations to the change of step size. To investigate this, I ran the algorithm with 5 different values
of λ and 3 different state representations. For this experiment, I chose this range of step sizes (1250
different step size): 1

1000 ,
3

1000 ,
5

1000 , . . . ,
2499
1000 . For each of them I ran the algorithm for 20 episodes, and

then took the average error over the last 5 episodes. I ran each of them for 30 times and then took
the average over the all runs at each point for step sizes. The reason I chose 20 to be the maximum
number of episodes was I saw in figures 2 and 3 that even for step size = 2−7 the algorithm almost
converged after 20 episodes. The results are shown in figure 4, the reason that the plots look noisy is



8 Kiarash Aghakasiri

that the offset that step sizes are changing is very small (0.002).

We can see from the plots that in tile-coding and binary-coding, higher values of λ have a lower
range of step sizes with a low error. This means that higher values of λ are more sensitive which
confirms my hypothesis. On the contrary, for state aggregation, there ordering appears to be different
for reasons that are not clear.

Comparing different representations, we can see that state aggregation (right plot) has the widest
range of step sizes with a low error which means it is the least sensitive to the change of step size,
which is the same as the hypothesis. I hypothesized that binary-coding should be less sensitive than
tile-coding which is not true according to figure 4. I think one problem with binary-coding is that it is
not normalized. Also, it probably cannot cover much from the true state space as it has only 5 features,
so it doesn’t have an acceptable error for any step size. In this project I only used one configuration of
tile-coding and state aggregation so the comparison between the representations is not as rigorous as it
could be. Because of this, I emphasized the comparison between the values of λ, not the representations.

Fig. 4: In all plots, the X-axis is the step size and Y-axis is the average error over the last 5 episodes
(episodes 15 to 20). The state representations are binary-coding, tile-coding, and state aggregation
from left to right. As we can see in the figures, state aggregation has the highest tolerance for step size
changing, it works with higher step sizes as well. Also we can see as λ gets bigger it gets more sensitive
to the change of step size in tile-coding and binary-coding representation.

Since the standard error was too small and plots in figure 4 were noisy the error bar wouldn’t
be visible at all. Hence, I am reporting the average of standard error over all step sizes for each
configuration in the below table.
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Binary-Coding Tile-Coding State Aggregation
λ = 1 0.0112 0.0232 0.0124
λ = 0.9 0.0120 0.0275 0.0068
λ = 0.8 0.0125 0.0303 0.0070
λ = 0.4 0.0133 0.0369 0.0229
λ = 0 0.0134 0.0405 0.0083

Table 3: This table shows the average of standard error over step sizes for 5 different values of λ and
3 different state representations for 30 runs.

4 Conclusion

To summarize, I investigated the performance of True online TD(λ) algorithms for different values of
λ and three different state representation, in convergence and sensitivity. Based on the results, my first
conclusion is that in a deterministic environment like Chain, when λ=1 and with right step size, True
online TD(λ) not only converges to a point with less error but also it converges faster in comparison
with lower values of λ. Moreover, when λ=1 the algorithm is more sensitive to the change of step size
and it will diverge with lower step sizes. On the other hand, using lower values for λ, the algorithm is
more stable for higher step sizes. Furthermore, tile-coding is a better state representation than binary-
coding and state aggregation in terms of error at the convergence point. Lastly, using state aggregation
as the representation rather than tile-coding or binary-coding reduces the sensitivity of True online
TD(λ) to the change in step size. So, with state aggregation, we can be less worried about tuning
the step size. Since the experiments only used one configuration of these representations, the last two
conclusions may not be as strong as the first two and need a more thorough investigation.
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